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ABSTRACT

This paper concerns the problem of planning a sequence of movements of

linked polyhedra through 3 dimensional Euclidean space, avoiding contact with

a fixed set of polyhedra obstacles. We prove this generalized mover's problem

is polynomial space hard. Our proof provides strong evidence that robot
movement planning is computationally intractable, i.e., any algorithm requires

time growing exponentially with the number of degrees of freedom.
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ABSTRACT

This paper concerns the problem of planning a sequence of movements of
linked polyhedra through 3 dimensional Euclidean space, avoiding contact with
a fixed set of polyhedra obstacles. We prove this generalized mover's problem

is polynomial space hard. Our proof provides strong evidence that robot

movement planning is computationally intractable, i.e., any algorithm requires

time growing exponentially with the number of degrees of freedom.
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1. INTRODUCTION

1.1 The Movers Problem

The classical mover's problem in  d-dimensional Euclidean space is:

Input: (O,P,pI,pF) where O 1is a set of polyhedral obstacles fixed
in Euclidean space and P 1is a rigid polyhedron with distinguished initial
position pI and final position pF. The inputs are assumed to be specified

by systems of rational linear inequalities.

Problem: Can P be moved by a sequence of translations and rotations
from p; to P; without contacting any obstacle in O?

For example, P might be a sofa* which we wish to move through a room
crowded with obstacles. Figure 1 gives a simple example of a two dimensional
movers problem,

The mover's problem may be generalized to allow P (the object to be
moved) to consist of multiple polyhedra freely linked together at various
distinguished vertices. (A typical example is a robot arm with multiple
joints.) Again, the input is specified by systems of rational linear

inequalities. (A precise definition of the generalized problem is given in

Section 2.)

1.2 Lower Bounds for Generalized Mover's Problems )

Our main result, first presented in [Reif, 79] (and given in full detail

in Section 2) is that the generalized mover's problem in three dimensions is

*The author first realized the nontrivial mathematical nature of this problem
when he had to plan the physical movement of an antique sofa from Rochester
to Cambridge,
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polynomial space hard. That is, we prove that the generalized mover's
problem is at least as hard as any computational problem requiring polynomial
space. (Polynamial space problems are at least as hard as the well known

NP problems; see [Garey and Johnson, 79).)

This was the first paper investigating the inherent computational complexity
of a robotics problem, and in fact was the first polynomial space hardness ]
result for any problem in Computational Geometry. Our proof technique is to
use the degrees of freedom of P to encode the configuration of a polynomial
space bounded Turing maching M, and to design obstacles which forced the
movement of P to simulate the computation of M.

j This work was originally motivated by applications to robotics: the
author felt it was important to examine computational complexity issues in
robots given the recent development of mechanical devices autonomously
controlled by micro and minicomputers, and the swiftly increasing computational
power of these controllers. However, it took a number of years before
computational complexity issues in robotics became of more general interest,
Recently there have been a flurry of papers in the now emerging area which

we might term Computational Robotics,

a o an an e o

Recent investigations in lower bounds have provided some quite ingenious
* lower bound constructions for restricted cases of the generalized mover's

problem. For example, [Hopcroft, Joseph, and Whitesides, 82] showed that the

generalized mover's problem in three dimensions is also polynomial space hard,
and [Hopcroft and Sharir, 84] show that the problem of moving a collection

of disconnected polyhedra in a two dimensional maze is polynomial space hard.
The problem of moving a collection of disks in two dimensions is known to be
NP-hard [Sparakis and Yap, 85], but is remains open to show this problem

polynomial space hard.
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1.3 Upper Bounds for Mover's Problems

Our lower bounds for the generalized mover's problem provide evidence
that time bounds for algorithms for movement planning must grow exponentially
with the number of degrees of freedom. We next give a brief discription of
known algorithms for mover's problems. In our original paper [Reif, 79] we
also sketched a method for efficient solution of the classic mover's problem
where P, the object to be moved, is rigid. 1In spite of considerable work

on this problem by workers in the robotics fields and in artificial intellegence,

‘ (for example [Nilson, 69], [Paul, 72}, (Udupa, 77}, [Widdoes, 74],

[Lozano~Pérez and Wesley, 791) no algorithm guaranteed to run in polynomial

time had previously appeared. Our approach was to transform a classic mover's
problem (O'P’pI'pF) of size n in 4@ dimensions to an apparently simpler
mover's problem (O',P',pi,p;) of dimension d', where P' 1is a single part
///and d' 1is the number of degrees of freedom of movement in the original
problem. The transformed problem is thus to find a path in d'=dimensional
space avoiding the transformed obstacles 0. The fundamental difficulty is that
the induced obstacles may be non-linear constraints. ([Lozano-Pérez and
Wesley, 79] did not construct O0', but instead approximated the induced
obstacles O' by linear constraints. Unfortunately, an exponential number
of linear constraints were required to approximate even a quadratic constréint
within accuracy 2", Thus their method required exponential time (i.e.,
cn

2 time for some c >0) even if the original mover's problem was two

dimensional.,)

Example. Consider a classical mover's problem (O,P,pI,pF) restricted
to dimension d =2, with the obstacles O consisting of a set of line
segments and P a single polygon. A position of P can be specified by a

triple (x,y,®) where (x,y) are the cartesian coordinates of some fixed

vertex of P and O is the angle of rotation around this vertex. We define




F . - - . - . o — i Aiate A St Mttt SR Sy M S i Saun snet S0 A B S LARACERA St At et St B bt it J w'_'-'t'.rv'vi-y-xf'-\-,-‘i$
e . . R Lo et e T A ST LR R TR R TR . RSt AC A - Lt e AN A

-4-

a mapping f from the position of P to 3-space. Let f(x,y,0)=(x',y',2')

2

where y=2', tan(f) =x'"/y', and x==(x')2 +(y'")" -a, for some sufficiently

larce constant a 20. (o may be taken as the diameter of a circle enclosing
P.) See Figure 3.

In this case, we lefine a I-contact set to be a maximal set of positions
of P where a vertex nf P contacts a line segment of C, or a vertex of 6
contacts a line segment of P. (See Figure 4,) The transformed obstacles O
are the union of these l-contact sets. Thus each obstacle in 0O' is a
quadratic surface patch which may be easily constructed from the input, there
are at most O(lO]|P|) such obstacles and their O(|O[2|P]2) intersections
can easily be computed within accuracy 2]’;‘C for any ¢ >0, by known poly-
nomial time procedures [Comba, 68] for intersection of gquadratic surface
patches. Hence in this simple example the connected regions bounded by 0O
can be explicitly constructed in polynomial time within accuracy 2-rlc which
T is sufficient for solution of this mover's problen.

In the case of a classical mover's problem (O,P,pI,pF) of dimension d =3,
the transformed problem (O',P',pi,p;) has dimension 4d'=6. 1In this case
we define a l-contact set to be a maximal set of positions of P where an
! edge of P contacts a face of O or an edge of O contacts a face of P.
Again, the l-contact sets are constant degree polynomials. The transformed
obstacles O' are the union of the l-contact sets. The connected regions

defined by O' can again be explicitly constructed by intersecting these

constraints. 1In [Reif, 79], we briefly suggested a method for this construction,

but the full credit should be given to [Schwartz and Sharir, 83A] who later
gave a complete detailed description of a method for explicit construction of
such a transformed movers problem in 3 dimensions in polynomial time.
({O'Dunlaing, Sharir, and Yap, 83] further improved this construction by

observing that movement of P can be restricted to be equidistant from

the obstacles.)
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This approach was extended by [Schwartz and Sharir, 83B] to solve any
generalized mover's problem of input size n with d' degrees of freedom in
2O(d')
time n . They make use of the algebraic decomposition of [Collins, 75)

(previously used to decide formulas of the theory of real closed fields) to

construct the connected regions bounded by O'. Note that their upper bounds

4 grow doubly exponentially with d', where as our polynomial space lower bounds

L suggest only single exponential time growth with d'. It remains a challenging

k problem to close the gap between those lower and upper bounds for generalized
: movers problems. Further progress will likely depend on improvements to

b

[

decision algorithms for the theory of real closed fields; recently [Ben-Or,

h‘ Kozen, and Reif, 84)] gave a single exponential space decision algorithm.

1.4 Further Problems in Computational Robotics

There are some very challenging problems remaining in the field of

Computational Robotics bevond the complexity of the mover's problem and its

generalization., We mention below three such problems and some recent progress.

wvwvwvrvyee
S, T
PR e

(1) Frictional Movement, The problem here is to plan movement for

(O,P,pI,pF) in the case contact is allowed in the presence of friction between
surfaces. [Rajan and Schwartz, 85) gives the first known decision algorithm in
the case that O 1is a cylindrical hole and P 1is a peg. ([Miller and Reif,

85] prove undecidability of planning frictional movement. What natural sub-

Py

class of frictional movement problems is decidable?

(2) Minimal Movement. Th: problem is, given a set of k polygonal

obstacles in 4 space defined by a total of n 1linear constraints, and
points pI, pF find a minimal length path from pI to Pg avoiding the
obstacle 0. [Chazelle, B2] gives a O(n log n) algorithm in the case d =2

O (n)
and k=1. [Sharir and Schorr, 84) give a 2 algorithm for d=3.
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Recently [Reif and Storer, 85] gave a O(nk log n) algorithm for d=2 and

ko(l) nO(log X) o(1)

n time and space algorithms for d=3. 1Is there a n

algorithm for d= 32

(3) Dynamic Movement. The problem is to plan the movement of a polygon in

d dimensions with bounded velocity modulus between points pI and pF,
so as to avoid contact with a set 0O of k polygonal obstacles (defined by
a total of n linear constraints) moving with fixed, known velocity. [Reif
and Sharir, 85] give the first known investigation of the computational
complexity of planning dynamic movement. They show that the problem of
planning dynamic movement of a single (k=1) disk P in d=3 dimensions
is polynomial space hard. (This result is somewhat surprising, since P in
this case has only 3 degrees of freedom. Our key new idea is to use time to
encode a configuration of a polynomial space bounded Turing machine.) 1Is
this problem polynomial space hard for dimension d =22

Asterold aveidance prcllcorme are a natural subclass of dynamic mover's
problems where each obstacle is convex and does not rotate., [Reif and
Sharir, 85] aive a polynomial time aloorithm for dimension d=2 with a

0(1)
n

bounded number k=0(1) of obstacles and give 2 time and n O(leg n)

space algorithms for dimension d=3 with an unbounded number k of obstacles.

Is the asteroid avoidance problem polynomial in the case dg= 3?

1.5 Organization of the Paper

In Section 2.1 we give a precise definition of the generalized mover's
problem. In 5Section 2.2 we define symmetric Turing machines. 1In Section 2.3
we give the relevant complexity theoretic definitions and results. In Section
2.4, we give our proof that the generalized mover's problem is polynomial space

hard.
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2. THE GENERALIZED MOVER'S PROBLEM 1S PSPACE-HARD

2,1 Definition of the Generalized Mover's Problem

We let a convex polyhedron in three space be specified by a finite set
of linear inequalities with rational coefficients. We let a (rational)
polyhedron be specified by a finite union of such convex polyhedra. Such a
polyhedron P can be encoded by some fixed convention as a finite binary
string <p>.

We will formally specify the three dimensional generalized mover's problem
(O'P'pI'pF) as follows:

(1) the obstacle set O consists of a finite set of (rational) polyhedra

O,y+0.,0
1l n1

(2) the object to be moved, P, consists of a finite set of (rational)

polyhedra PrrecesP which are freely linked at distinguished Zinkage
2

Vertices V_,e.e,V
1 n3

(3) pps Pp are distinguished tnitial and final rational positions of
P.
Hence we may encode (O,P,pI,pF) as the string (<01>,..., <On1>)
(<Pl>,..., <Pn2>,vl,...,vn3) (<pI>, <PF>)' The size of (0,P,p ,Pp)
is the length of this encoding.

A legal position of P is any position where each polyhedron P,
of P intersects no obstacle of O and furthermore intersect no other poly-
hedron of P except at its specified linkage vertices. We assume, of course,
that P, and pp are both legal positions. A legal movement of P is a
continuous sequence of simultaneous translations and rotations of the

polyhedra of P through only legal positions. The generalized mover's

problem is to determine the existence of a legal movement from Py to pr.
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It is important to observe that any generalized mover's problem is
reversible in the sense that if there is a legal movement of P from pI
to Ppe then the movement can always be reversed so as to begin at pF and
end at p;e This reversibility properrcv imposes a constraint on the class
of computation problems which can be simulated by generalized movement problems;

in particular the simulated machine must be symmetric in a sense precisely

defined below.

2.2 Symmetric Computations

A symmetric Turing machine is defined (see also [Lewis and Papadimitriou,
82] for an equivalent definition) as M= (T,X,Q,qI,qF,A) where
(1) T is the tape alphabet with distinguished pad symbol $ €T and
blank symbol # €T
(i1) Zc T~{s,#} is the input alphabet
(1iii) @ is the state set with distinguished initial state q; €9 and
accepting state q, €0
(iv) Ac(Q XF2 X{-l,l})2 is the transition relation, where we require
that for each transition ({(g¢,L,R,D),(g',L',R',D')) €A
(a) D'=~-D
(b} if L=$, then D#1l, Alternatively, if R=$, then D#1
{¢) also ((¢',L',R',D'),(q,L,R,D)) €A,
We will also be given a space bound s =s(n) which is a function of the
input length n such that s({(n) Zn. M has a single read/write tape with s +2
tape cells. This tape has contents t=t tl"°tsts+l where to =t 1 =$ and

0 s+
tise.e,t €T - {s}.
M has a single read/write tape head which simultaneously scans the tape
cell under the current head position, as well as the tape cell immediately

to the left or right of the current head position depending on the direction

Rl AR S g
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of the next move of the tape head (this convention is used to allow for
reversability). Restriction (b) insures M never moves its head off the end
of the tape. Restriction (c) implies that the transition relation is a
symmetric relation.

More precisely, a configuration of M is a tuple 1ID = (q,h,t) where
g €Q is the current state, h€{1,...,s} is the current position of the tape

head, and t=t t. ...t t
s's

ot1 1€$(F -{sH®s is the current tape contents. The

-+

next move relation r 1is a relation on configurations such that
{g.h,t) +(g',h',t') iff there exists a transtion ((gq,L,R,D),(q',L',R',D')) €A
the new head position is h' =h +D, the new tape contents t' are identical to
the previous tape contents t except at positions h and h +D.

(1) if D=1 then t =L, ¢t =R, t;]=L', and t! R'

h h+l h+1=
(2) if D=-1 then th—1=L’ th=R, tl:1—1=L" and t}'1=R'.

Given the input string w=w A €X', the tnitial configuration is

1

S-n . S
D (w) = (qI,l,Swl...wn# $). We define 1ID_= (qF,l,S# $) to be the

F
accepting configuration of M. Let #* be the transitive closure of .

M geespie input w o iff IDO(w) f-*IDF. Let L(M) be the language accepted

by M.

2.3 Complexity Definitions

For some space bound s =s(n) 2n let DSPACE(s), SSPACE(s), NSPACE(s)
denote the class of language accepted by deterministic, symmetric, and

nondeterministic Turing machines, respectively. [Savitch, 70] shows

PROPOSITION |. NSPACE(s) C DSPACE(s’).
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e e e e T T e e e T e T e L e e

) - . . . . e 0 P < ~ - Tt T Tt et .t
LIPILIPREIRCIAC ST, SR A S AL P SN DN SR TP AT SR TN, D, T S W L S R S T A




g o S At e b S-S Sy A R Sitci Ot s TRl A Sheth Dt St St S ettt i

-11-

M accepts input w.
We can assume, without loss of generality, that s =s(n) is constructible
in deterministic O(log n) space.

It will be useful to consider the tape alphabet I to be the integers

{1,...,v}, where y=|T|. i

We begin by defining P, the object which is to be moved. P will contain

a sequence of triangular pyramids of identical size which will be

Ao,...,AS+l
called arms., For each i=0,...,s+1 arm Ai has a distinguished arex
vertex v, Ai has an equilateral triangular base with base sides of length
a=1/(4(y+1)). Each of the vertices of the base is of length 1/2 from the
apex vertex vi (see Figure 5). For each i=0,...,s there is also a
straight (one dimensional} link of length 1 from A to vi+l which freely
links Ai to A, (see Figure 6).

i+l
It will be useful to define a cutout polygon Q consisting of the union
of a rectangle and a set of triangles {Qij} of identical size for
i=0,¢04,2s+1 and j=1,...,Y. The rectangle is of horizontal length 2s +1
and vertical height € =a/10. Each triangle Qij has a distinguished vertex
s, connected to two sides of length 1/2 +e¢, and a base side of length a +¢
opposite uy (see Figure 7). On the upper side of the rectangle is the

sequence of vertex u spaced at distance 1 between each other.

0’ Y2541
For each i =0,...,2s+1 the triangles Qil""'QiY each share vertex u,
but are otherwise disjoint, and arranged in cyclic order (as in Figure 8).

let TUNNEL(Q) be a cylinder with perpendicular cross-section Q.
Therefore, the interior of TUNNEL(Q) is formed by sweeping Q in a direction
perpendicular to the plane in which Q is contained. We will call the

region swept out by triangle Q; 3 the Q. j-slot.
r r

The basic idea in our construction will be to use the s +2 degrees

of freedom of P to encode a given configuration of M.
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lLet h€{1l,...,s} be a head position and let t =t t,

be the contents of the tape. We say P encodes (h,t) if P is positioned

.ot t
S s+
in the interior of TUNNEL(Q) so that for i=0,1,...,s+1 arm Ai is in

the Q -slot (see Figure 9). We say P is properly positioned if

s-h+i,ti
P encodes some (h,t). We shall define obstacles and the initial position
in such a way that P is always properly positioned.

Observe that we have defined TUNNEL(Q) so that if P is properly
positioned in its interior and P encodes (h,t), then P always encodes
(h,t) on any legal movement of P within the interior of TUNNEL(Q) since
the arms of P remain in the same slots.

A segment of TUNNEL(Q) is a copy of the cylinder TUNNEL(Q) bounded by
two planes perpendicular to the cylinder (see Figure 10). We will allow
separate segments of TUNNEL(Q) to be merged into a single copy of a
TUNNEL(Q) segment. This can be done as in Figure 11, so that if P encodes
(h,t) on an entrance, P encodes (h,t) on the exit. Note that of
course, P can also move from the exit back to either entrance, without
modifying the encoding (h,t). Thus this construction can also be viewed as
the branch of a segment of TUNNEL(Q) into two segments of TUNNEL(Q).

Next we require a construction of obstacles which force P to modify its
position so as to simulate next moves of the symmetric machine M,

For any L,R€{1,...,Y}, let QI[L,R] be the polygon derived from Q by
deleting all triangles @

and Q for all jO €{1,...vy} -{r} ana

s,j
0
jl €{1,...v} -{rR} (see Figure 12). Observe that if P is positioned in the

interior of TUNNEL(Q[L,R]) and P encodes (h,t), then arm Ah must be

in the @ _-slot and arm Ah+l must be in the © -slot and hence the

s,L s+1,R

encoded tape symbols in the h and h+1 position are th =1L and th+1==Rr

respectively.

LESCT -{sH®s
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Let 6 be the figure derived from @ by adding two semidisks with
radius 1/2 +€, and with centers at u and LI (see Figure 13). Note
that if P is positioned in the interior of TUNNEL(a) so that P encodes

(h,t) except at t and t

h h+l’ then the arms Ah and Ah+l are each free »

to move within the interior region swept out by a semidisk.

let 8€A be a transition, where

§ = ((g,L,R,D), (¢',L',R",~-D)) .

We will define an obstacle BG with a connected interior region with
distinguished entrance and exit, and with the property that if P enters the

interior of B6 encoding (h,t), then when P exits B P encodes (h',t'),

6'

where

{(g,h,t) + (q',h',t")

We first consider the case D=1, Then we let Bd consist of a concatenation
of unit length symbols of the following:

(1) TUNNEL(Q)

(2) TUNNEL(QIL,R])

(3) TUNNEL(Q)

(4) TUNNEL(Q[L',R'])

(5) TUNNEL(Q), which is displaced one unit to the left with respect to

segments (1)-(4).

(See Figure 14.)

Suppose P enters B6 encoding (h,t). Then P can move through

A
TUNNEL{(Q{L,R)) only if t, =L and t s =R After moving through TUNNEL(Q),
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P encodes (h,t'), where t' 1is identical to t except tﬁ and '+l

are arbitrary elements of {1,...Y}. However, P can move through

TUNNEL{Q{L',R'}]) only if tﬁ =L' and tﬂ+1 =R'., Since the last segment of

TUNNEL(Q) is displaced one unit to the left, P exits B6 encoding

(h+1,t'), where (g,h,t) + (g',h+1,t'). _
In the case D=-1, we take Bg to be Bgs with the exit and entrance

face reversed, where ¢'=((',rL',R',1),(q,L,R,-1)). (Note that BS' is

. already defined by the above construction for D=1,) Since movement of P

is always reversible, P enters B6 encoding <(h,t) and exits
encoding (h-1,t') iff P enters Bd' encoding (h-1,t') and exits
encoding (h,t) iff (q',h-1,t') + (q,h,t) iff (q,h,t) + (g',h-1,t'), since
+ 1is symmetric.
We now have defined all the elementary building blocks regquired to simulate
a computation of M. We will construct a copy Cq of a TUNNEL(Q) segment
for each state q€09Q. Cq will make a series of branches so as to lead to
the entrance of each Bé such that 8 €A 1is a transition from state q.
' Also Cq will make a series of branches in the opposite direction, so as to

lead to the exit of each B such that &' €A is a transition to state gq.

6!
Note that the construction is of polynomial size and can easily be done by a

‘ O(log n) space deterministic Turing machine.

For the proof of our construction, it will be useful to extend our definition

of encoding so that if P is located in the interior of Cq encoding (h,t),
we also then say that P encodes configuration 1ID=(q,h,t).
Given input w==w1..nﬁ1€wn, we define the initial position P; to be

a rational position of P encoding the initial configuration

ID, (W) = (qI,l,Swl...wn#s-ns) .
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The final positdon Pp is defined to be a rational position of P encoding

the accepting configuration IDF =(qF,1,$#s$).

LEMMA. P has a legal movement from p, (W) toa position encoding econfiguration

Ip iff IDO(w) +* ID.

Proof. IDO(w) =* ID iff 3 a sequence of configurations

IDO(W) =IDO,ID1,...,IDk.=ID where IDO'-IDl'°"'IDk-1,FI

sequence of transitions 51,...,5k €A where IDi =6i(IDi_l) for i=1,...,k.

We now claim that this holds iff P has a legal movement from pI(w)

Dk iff 3 a

through B, ,...,B {in this order) to a position p encoding ID =1D.
61 Gk k k
In the case k =0, the claim obviously holds since pI(w) encodes IDO(e).

Suppose the claim holds for all k' <k, Then P has a legal movement from

pI(W) through B(S:L,...,Bdk-l to position Pro1 encoding IDk-l iff
IDO(w) r* IDk-l' But our above construction of 85 insures that there exists
k
a legal movement of P from pk-l through B6 to a position encoding IDk
k
. _ , . o
iff IDk Gk(IDk_l). Hence the claim holds

The Lemma then implies: P has a legal movement from initial position
pI(w) to final position Pr iff IDo(w) % IDF’ where IDF is the accepting

configuration. This completes the proof of our theorem. ' D
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[Lewis and Papadimitriou , 82] show
PROPOSITION 2. DSPACE(s) € SSPACE(s) € NSPACE(s).

Let

PSPACE = DSPACE (n°) )

U
czl
The above imply
PROPOSITION 3. PSPACE = U SSPACE(n").
c21

A log-space reduction from a language L' CI* to a language L is a
mapping f computable by a 0(log n) space bounded deterministic Turing
machine such that for each input w€Z*, we€L' iff f(w) €L. In this case,
we say L' is log-space reducible to L. Note that any log-space reduction
requires only time bound 2O(log n) =no(l) .
Given a language class L, a language L is L-hard if each language

L' €l is log=-space reducible to L.

2.4 The Simu'- ion of a Symmetric Turing Machine

We now prove:
THEOREM. The generalized mover's problem is PSPACE-hard.

Proof. Let M= (F,Z,Q,qI,qF,A) be a symmetric Turing machine with polynomial
space bound s(n) =nc for some constant c¢=21. We will construct a log-space
reduction from L(M) to the generalized mover's problem. 1In particular, given

. n .
an input w=w ...wnEZ , Wwe must construct in O0O(log n) space a mover's problem

1

f (w) =(O,P,p1,pp) such that P has a legal movement from Py to Pp iff

nicmintuteth ol P at at oty "o PN PR PR I I
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A solution to the 2-D Mover's Probiem of Figure 1.
P may be moved through positions

PI =p0'pl’ ce- rPS =pF.

Figure 2.
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Figure 4.

Transformed mover's problem from Figure 1.
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The obstacles of

the transformed problem define a torus with cross-sections

illustrated for 6 =0, m/4, w/2, 31/4, T.

P may be moved

through positions Py =PgePyre-e/Pg =P, as in Figure 2.
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